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Abstract

Dell’s target to provide quality products based on reliability, security, and man-
ageability, has driven Dell Inc. to become one of the largest PC suppliers. The
recent developments in Artificial Intelligence (AI) combined with a competitive mar-
ket situation have encouraged Dell to research new opportunities. AI research and
breakthroughs have risen in the last years, bringing along revolutionary technologies
and companies that are disrupting all businesses. Over 30 potential concepts for AI
integration at Dell Inc. were identified and evaluated to select the ones with the
highest potential. The top-most concept consisted of preventing in real time the failure
of hardware. This concept was investigated using a data science process.

Currently, there exist a number of machine learning tools that automate the last
stages of the proposed data science process to create predictive models. The utilized
tools vary in functionality and evaluation standards, but also provide other services
such as data and model storage and visualization options. The proposed solution
utilizes the deep feature synthesis algorithm that automatically generates features from
problem-specific data. These engineered features boosted predictive model accuracy
by an average of 10% for the AUC and up to 250% in recall for test (out of sample)
data.

The proposed solution estimates an impact exceeding $407M in the first five years
for Dell Inc. and all of the involved suppliers. Conservatively, the direct impact on
Dell Inc. is particular to batteries under warranty and is expected to surpass $2.7M
during the first five years. The conclusions show a high potential for implementation.
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Chapter 1

Introduction

With the purpose of exploring the exponentially growing field of Artificial Intelligence

(AI) applications, this thesis has the objective to present an overview of AI technologies

and machine learning tools available today, as well as their specific application for

the prevention of hardware failures. AI is enabling the new “smart” hardware and

software applications that are disrupting businesses and the way we live our daily

lives. AI is a broad term that will be explained later, but for the objective of this

work, AI applied to a pragmatic business-applied purpose will be referred to as “Smart

Machines” [1]. This is highly relevant in our time, as barriers to entry have been

considerably lowered by the availability of open source AI algorithms and platforms,

the increase in economical and scalable cloud computing power, and surge in data

generation, which can easily enable anyone to become a “citizen data scientist.”

1.1 Motivation: if an oven can be smart, why can’t

a computer be smart?

Today, there is already a “smart” oven called June [2], which can precisely tell the

difference between a chocolate and a raisin cookie, knows the weight, etc. to choose

the right cooking time and temperature gradient to follow [3], while always improving

its recipes. It has an NVIDIA central processing unit (CPU) and graphics processing
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unit (GPU) along with two gigabytes (GB) of random access memory (RAM), Wi-Fi

connectivity, a camera, and other sensors [2]. This is practically a computer. So, why

aren’t our computers even smarter?

The overarching goal behind this project is to explore the application of new data

science tools that can be applied to different business cases and for Dell Inc.1 to take

advantage of such opportunities in an extremely demanding market. This research

also explores potential concepts that will allow Dell to develop a competitive and

higher-quality product. The proposed concepts create value for the customer and

provide a better customer experience.

Currently, Dell has over 100 million deployed systems comprising desktops and

laptops, and it is expected to ship around 20 million systems in the next year. Dell

puts special emphasis to offer the most secure, manageable, and reliable products.

Given this ambitious goal, there is always potential for improvement.

Today, computer failures are mostly treated post-event, which creates a major

problem for the user and an important monetary impact on the service providers.

However, Dell has recently launched Support Assist for Clients (SAC), software

that enables the user to capture hardware data coming from hundreds of attributes

pertaining to the hardware components, type of alerts, and failure types in a desktop

or laptop.

The uses for this data can be quite varied and can provide valuable insights, such

as system performance, influential interactions of hardware components and operation,

etc. With this data, we can also potentially prevent hardware failures by warning the

user, or even self-correcting based on real-time data that feeds into ever-improving

predictive models. Just considering hardware cost and attending customers’ calls, we

have estimated these hardware failures to have an annual yearly cost of over $900M

across the world. There is an interesting opportunity to make the products more

reliable by making them predictive or proactive, rather than reactive, through an

advanced and dependable process.

1Dell Inc. will be referred to as “Dell” throughout this work
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1.2 Problem description and goals

Hardware component failures in desktops and laptops can occur instantly, randomly,

and without much warning. This affects Dell’s customers globally, and Dell itself.

These failures can cause great inconvenience to the customer, going beyond the physical

damage to the product and data by extending to invaluable losses in time, productivity,

and critical activities that depended on the reliability of these products. Additionally,

Dell allocates resources consisting of people, customer service organizations and

facilities, and hardware components to replace the damaged parts. This entire

infrastructure to remedy failures is also reflected in a heavy financial burden that has

the potential of being reduced or, in the best scenario, eliminated, and transformed

into a business opportunity.

This thesis, instead of conducting a root cause analysis for the hardware failures

themselves, focuses on seeking a solution to make desktops and laptops effectively

robust against hardware failures. This will be done through a thorough analysis

of available machine learning tools and testing them with Dell’s available data for

hardware failures. There will be a special focus on the tools’ functionalities, available

machine learning algorithms, tuning of hyperparameters, evaluation metrics, and other

services, such as visualization options.

1.3 Hypothesis

The hypothesis of this inquiry is that an appropriate model to predict hardware failures

can be built using data collected from different hardware sensors in the computer. The

expected outcomes are a variety of accurate models to be created with the different

available machine learning tools. Additionally, if the first hypothesis is proven true,

another hypothesis will be explored that states that labeled training data generated

with the deep feature synthesis algorithm (DFS) [4] will result in higher accuracy

models. Finally, after this analysis, the development of an end-to-end data-driven

solution for the problem of preventing hardware failure will be proposed on hindsight.
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1.4 Thesis overview

Chapter 1 introduces the motivation for this project. Some context is given for

the problem to be solved: preventing hardware failures. Lastly, the hypotheses

are stated as: determining whether hardware sensor data can be used to prevent

different hardware failures, and that features created with the “deep feature synthesis”

algorithm improve the accuracy of the predictive models.

Chapter 2 establishes the connection between data science, AI, and machine learn-

ing. It also describes the background and factors that are making AI an increasingly

relevant and applied topic today. Dell’s background and interest in improving products

through AI is explained.

Chapter 3 explores different AI opportunities that are available for Dell. For this,

a taxonomy and framework to understand AI is proposed and explained. In the last

section, the opportunities within and outside of Dell are presented, and the importance

of preventing hardware failure is discussed.

Chapter 4 reviews literature on previous work on the subject of preventing hardware

failure. Statistical and machine learning methods are reviewed.

Chapter 5 proposes a data science process with six stages to follow an adequate

path into solving prediction problems. The different stages and their connections are

carefully explained. This section dives deeply into the available data, and especially

the structure of the data, concerning hardware components in Dell’s desktops and

laptops. Also, the data science process is applied to Dell’s particular problem to

prevent hardware failures and focuses on hard drive failures due to their relevance

and data availability.

Chapter 6 depicts seven different machine learning tools (platforms) and software

that are currently available to analyze data, create predictive models, evaluate these

models, and understand relationships and influences, among other uses. These tools

are utilized to clarify their different capabilities, and specifically tested to build models

to prevent hard drive failures using two different “labeled training data” approaches.

Chapter 7 highlights the financial impact that preventing hardware failure can
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have across Dell and their suppliers. The last section emphasizes the value of the

proposed end-to-end data-driven solution to prevent hardware failure in desktops and

laptops on a global scale.

Chapter 8 concludes this thesis with a summary of the key findings and contribu-

tions and provides recommendations that resulted from this work. Future potential

projects at Dell are discussed and conclusions are presented.
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Chapter 2

Background

2.1 What are the connections between Data Sci-

ence, Artificial Intelligence and Machine Learn-

ing?

Data science spans a broad range of interdisciplinary fields that includes computer

science, mathematics, statistics, modeling, analytics, and information science, among

others. The goal of data science is to utilize techniques to extract valuable knowledge

from data with the aid of automated processes and systems. William Cleveland first

introduced the discipline of data science in 2001, when he integrated the advances in

“computing with data” to the field of statistics [5].

Like data science, AI is a broad subject and sometimes nebulous to people as it

quickly convolutes into a topic dealing with machines that can think, reason, make

decisions, and act like a human or have even higher capabilities than humans. Many

researchers quickly turn to the psychology and philosophy of learning and discerning

as humans and how this learning applies to these machines. More concretely, Tim

Urban classifies AI into three categories [6]:

1. Artificial Superintelligence (ASI)

ASI ranges from a computer that is somewhat smarter across the board than
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a human to one that is smarter than any combination of all human society

including scientific creativity, social skills, and general wisdom.

2. Artificial General Intelligence (AGI)

AGI is also referred to as “Strong AI,” or “human-level AI.” It refers to a

computer that is as smart across the board as a human–a machine that can

perform any intellectual task that a human being can. This category of AI

means machines have abilities to plan, reason, solve problems, think abstractly,

comprehend the complex, and learn quickly and from experience (inference).

3. Artificial Narrow Intelligence (ANI)

ANI is also referred to as “Weak AI.” This AI specializes in just one area. This

type already exists, and we use it in our everyday lives.

All of these capabilities make AI a wildly interesting topic; however, this thesis will

focus on ANI technologies that are applicable to current businesses.

Machine learning is the most common technology, or set of algorithms, associated

with AI as it has a very broad use. We clearly see the parallelism with AI as Andrew

Ng, Chief Scientist at Baidu Research and professor at Stanford in the Computer

Science Department, describes machine learning as “the science of getting computers

to learn, without being explicitly programmed.” There are two major machine learning

branches: supervised and unsupervised.

1. Supervised learning

Uses labeled data and focuses on classification and prediction. Some examples of

algorithms include artificial neural networks, decision trees, genetic algorithms

(evolutionary algorithms), K-nearest neighbor (KNN), multivariate adaptive

regression splines (MARS), random forests, support vector machines (SVM),

etc.

2. Unsupervised learning

Uses unlabeled data and focuses on clustering, dimensionality reduction, and
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density estimations. Some examples of algorithms include the Eclat algorithm,

K-means algorithm, expectation-maximization algorithm, etc.

Each of these different branches has a plethora of different algorithms that vary in

performance depending on the data and end goal.

In addition, deep learning has been an increasingly popular variant of machine

learning. Deep learning uses neural nets typically with more than two processing

layers. The layers provide a “deeper” level of features from the data, which provides

better classification and prediction performance.

2.2 Three factors that are making AI very relevant

now

John McCarthy coined the term “AI” in 1956 when the first academic conference

on this subject was held [7]. AI went through an exploratory process with much of

today’s theory based on concepts from decades ago. So, why is it is so significant now?

The crossroads of three factors have made AI stir unprecedented interest and activity

in the past years and become very relevant in the business world. These factors are

available data, increased computing power, and powerful algorithms.

Data generation has reached historically maximum levels, and most of the data

generated is unstructured. As IBM states, “Every day, we create 2.5 quintillion bytes

of data – so much that 90% of the data in the world today has been created in the

last two years alone” [8]. Also, with the Internet of Things (IoT) on the rise, data

is coming from an increasing variety of sources such as GPS, online posts, climate

sensors, energy meters, transportation routes, the human body, etc. The amount of

data and sources is expected to increase considerably. According to Strategy&, “the

installed-base of internet-connected devices exceeded 7 billion in early 2014 and is

expected to grow to 50 billion by 2020. More than 10 times the amount of personal

computers” [9]. Even IDC mentions that by 2020, we will be producing 50 times more

data than in 2011 as pictured in Figure 2-1 [10]. Therefore, we need systems that can
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generate useful insight from all this data.

Figure 2-1: Exponential increase in data generation; 50-fold growth from 2010 to 2020.
Greatly influenced by IoT.

Additionally, the computing power available for very low prices has played an

important role in the processing of all the generated data. As seen in Figure 2-2 [11],

the increase in computing technology follows an exponential growth curve, based on

Moore’s law, and futurist Raymond Kurzweil correlates this growth to a part of his

“Law of Accelerating Returns” [12].

According to Deloitte, “computing cost-performance has decreased by more than

three orders of magnitude in the past 25 years” [13], making it a decline of 33% year-on-

year. Improvements in hardware, such as CPUs and GPUs, have allowed the efficient

processing of this much data. According to Gartner [14], GPUs have had a 10,000

times improvement since 2008, increasing the number of possible connections from

1× 107 million to 1× 1011 million. An example is NVIDIA’s new “Tesla GPU,” which

processes 10-100x the application throughput of traditional CPUs [15]. Moreover,

advanced neuromorphic architectures based on field-programmable gate arrays surpass

GPUs three times in energy efficiency and according to Gartner, have a 70% increase

in throughput with comparable energy used [16].
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Figure 2-2: Increasing computing power as estimated by Ray Kurzweil. The y-axis
describes the calculations per second (cps) per $1,000. As shown, $1,000 will be able
to buy enough computing power as “one human brain” in the next few years.

Much of the structure of algorithms powering AI today existed years ago, but

sufficient data and computer processing power were not easily available. Now, these

algorithms have come to be used and proven very effective at tasks such as classification

of structured and unstructured data, pattern detection, optimization, and predictive

modeling, among other uses. Some examples of the types of algorithms used in AI are

machine learning, deep learning, image recognition, natural language processing, etc.

These algorithms have various uses such as data mining, text mining and search, expert

systems, speech recognition and interaction, medical diagnosis, financial decisions,

and fraud detection, among others. The key differentiators of these algorithms is that

they are no longer programmed to “solve a problem,” but to “learn how to solve a

problem.”

However, these algorithms have also improved, and we can see this strategy in the

powerful open source algorithms that exist (such as in R or Python programming)

and how many large companies have open sourced their algorithms, such as Google
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(TensorFlow), Facebook (Torch), Apple (Swift), Microsoft (DMTK – Distributed

Machine Learning Toolkit), Netflix (Spinnaker), etc.

With these enabling factors, automated procedures are being developed to gather

and process data to derive valuable insights for actionable results. Given these factors,

Gartner expects that “by 2017, the amount of citizen data scientists will grow five

times faster than the number of highly skilled data scientists” [17].

The business community has taken notice. According to data retrieved from

Gartner and Venture Scanner [18], over the course of 2015, more than 270 new

startups focused on AI were founded and over $2 billion dollars were invested in the

field, which is more than a 700% increase from the previous year, where it had even

tripled as seen in Figure 2-3.

Figure 2-3: Total venture capital money for pure AI startups. The USA and London
lead in start-ups, with many in Canada, India, and China. About one half of the
funding has gone into deep learning, one fourth into computer vision, and one eight
into natural language processing (NLP). The most active funds have been Intel Capital,
Techstars, 500 Startups, and Y Combinator.
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2.3 Dell Background

Looking further back, Dell’s history [19] provides useful context for what are now

applicable AI opportunities. Michael Dell founded Dell Computer Corporation, then

PC’s Limited, in 1984 with just $1,000 in his dorm room at the University of Texas at

Austin. His vision was to change “how technology should be designed, manufactured,

and sold.” He set out to sell directly to customers with a focus on service in order to

truly understand their needs. Just four years later, Dell went public and raised $30

million and continued growing 80% per year during the first 8 years, almost gaining

half of the marketplace. During the 1990s, Dell expanded globally to Europe, Asia,

and the Americas, while also becoming the number one ranked PC business in the

USA and number one worldwide for PCs in medium and large businesses. In the 2000s,

the ecommerce site dell.com became one of the highest volume ecommerce sites with

over $40 million in revenue per day. Shipments grew 60%, about four times as much

as typical for industry players. Later on, Dell started to focus on offering end-to-end

solutions, which he achieved by acquiring over 20 companies for $13 billion from 2006

to 2013.

In 2013, Michael Dell bought back Dell. This event was at the time the biggest

public company to return to private. Dell focused on four key areas: Operations and

Client Services, Enterprise Solutions, Software, and Research. As always inspired to

offer a great product to customers and with the ever-changing and fast-paced tech

environment, Dell announced in 2015 plans to acquire EMC in the biggest acquisition

in tech history for $67 billion [20]. Dell now has over 100,000 employees, and is one of

the top three largest suppliers of PCs and laptops.

The focus of this work will be within the Operations and Client Services (OCS)

business in Dell. OCS accounted for over half of the company’s $60+ billion in revenue

in 2013, and it consists of various main categories: notebooks, desktop PCs, thin

clients, and client-related peripherals. OCS is the largest business unit within Dell,

and with the tough market, Dell has been recently under constant pressure to innovate.

Therefore, because of the nature of the market, any technologies or innovations that
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will create a product with better performance and higher quality that can be priced

above market will always be an attractive and also crucial opportunity to go after.

This work focuses on the potential AI applications for desktops, notebooks, and thin

clients.
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Chapter 3

Smart Machines: AI Opportunities

for Dell

3.1 What is a Smart Machine?

As explained in the introduction, this work focuses on applied AI for businesses.

Gartner states, “‘Artificial intelligence’ and ‘cognitive computing’ are not synonymous

with ‘smart machines’ and may set unrealistic expectations for development and

deployment. ‘Smart machines’ reflect a more diverse, pragmatic business purpose”

[1]. The “Smart Machines” term means that systems will acquire the ability to

train themselves, learn from their mistakes, observe the environment, converse with

people and other systems, enhance human cognitive capabilities, and replace workers in

routine tasks. All these tasks are done through the different, applicable AI technologies

this work has been referring to.

3.2 AI taxonomy

In order to better understand the opportunities that lie ahead, this work proposes

a taxonomy to classify the different AI technologies and algorithms. The basis for

this classification of technologies lies in their uses and applications. The proposed

taxonomy for AI in this work is the following:
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1. Machine Learning

It can probably be considered the broadest and most applicable of the tech-

nologies due to its flexible interdependent nature. It is a subfield of computer

science that derived from pattern recognition and computational learning theory.

As previously explained, with this technology software can develop insights

and features from data without it being explicitly programmed to do so. As

mentioned, the two main branches are supervised and unsupervised learning

(see 2.1).

2. Deep Learning

It is a set of algorithms that coincide with machine learning. More specifically, it

is a technology based on neural nets. The concept of neural nets was inspired by

the biological functioning of the brain, which takes multiple inputs and different

areas extract specialized parts of information. Deep learning models abstract

data from more complex sources and utilize multiple “specialized layers,” which

permit a deeper level of feature abstraction, such as prediction accuracy and

classification.

3. Image Recognition

It is also known as computer vision. It is the field that has specialized methods to

gather, process, analyze, and understand images through particular algorithms.

It utilizes a combination of physics, geometry, statistics, and learning theories in

order to achieve recognizing images.

4. Natural Language Processing and Natural Language Interaction (NLP

& NLI)

It is the ability of a computer to understand text and human speech. This can

be done through a combination of machine learning algorithms in addition to

specific rules to follow. This allows a computer to understand the structure,

extract meaning, process it, and produce natural language.

5. Prescriptive Analytics
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It is the highest of the three levels of analytics. It combines advanced statistics

and mathematics with data synthesis and computational science. Prescriptive

analytics will make different predictions based on the data and then recommend

different choices of action to implement depending on the expected outcomes

and consequences. Second, predictive analytics involve advanced forecasting

methods such as regression, which predict what will happen according to the

data we have. Third, descriptive analytics is a term used for performing the

basic analytics to understand past events and can generate information such as

average, mean, median, standard deviation, etc.

3.3 AI framework

In order to detect potential opportunities for Dell, a framework was developed to

understand and classify AI as well as to understand market potential. The methodology

to develop such framework was based on interviews and research. The proposed AI

framework is layered in the following way:

1. Smart Infrastructure

Includes the client (personal computers and laptops), storage, servers, networking,

database and cloud management. This provides advanced infrastructure that

scales beyond current capabilities of IT, where it is agile, simple, and automated

for dynamic environments.

2. Smart Data

Includes discovery and analytics software, cognitive platforms, and information

management software. This layer is based on the platforms and tools such as

machine learning, deep learning, prediction, visualization, etc. and combines

features of databases, business intelligence, and comprehensive research.

3. Smart Apps and Services

Includes end-user apps and services. This layer provides real-time insights
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and recommendations, automation and enhancement of work, and predictive

behavior.

Figure 3-1: AI Framework and Market Potential. Today’s estimated $4.5B market is
growing at 35% CAGR based on IDC’s Cognitive software platform forecast.

Within the proposed framework, Dell clearly plays in the first and second layers

of Infrastructure and Data, which importantly includes a large part of the market.

However, it is important to capitalize on the “Smart” opportunities within these fields

as shown in Figure 3-1.

3.4 Opportunity detection

Having defined a taxonomy and framework for AI, two strategies, internal and external,

were set to research opportunities for Smart Machines. The internal strategy was to

gather all current Smart Machines or related AI initiatives as well as to conduct a

brainstorming session with technical experts. The external strategy was to conduct

an extensive market and competitive analysis to detect attractive use cases.
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3.4.1 Opportunities within Dell

A brainstorming session was conducted and later evaluation criteria were selected and

thoroughly researched in order to prioritize the implementation of the concepts. The

concepts were focused on the Operations and Client Services business at Dell.

The brainstorming yielded 30+ potential concepts, which were classified in the

following categories: security, serviceability, manageability, and productivity. The

criteria used to evaluate these concepts consisted in: technology readiness including

ease of implementation, financial impact, Intellectual Property (IP) potential, and

business alignment within Operations and Client Services and Dell. For more details on

the ranking, reference Appendix A. Further analysis revealed that 16 were completely

new concepts, seven were in discussion processes, and the rest were already being

developed within Dell in some form.

3.4.2 Why monitor hardware to prevent failures?

After evaluating the different concepts, only brand new ideas were selected, as shown

in Figure 3-2, and out of those, the top ranked concept from each category was selected

for further investigation. These were:

1. Security – Environmental and contextual security

2. Serviceability – User self-help smart Q&A

3. Manageability – Self-management and self-healing (hardware failure preven-

tion)

4. Productivity – Personal productivity enhancer

Monitoring hardware for failure prevention stood out among the rest for several

reasons consisting of: technology readiness (including data availability), financial

opportunity, and Dell fit. On the technology side, Dell had started to actively collect

sensor data from authorized systems, which included desktops and laptops, within

the past year. This data consisted of the parameters within hardware sensors, which

39



Figure 3-2: The categories and top-concept applications were evaluated and selected
using the shown parameters.

are collected by the Support Assist for Clients software. Algorithms, such as machine

learning to find failure patterns, were also readily available. Financially, this concept

promised a very attractive opportunity, and seemed to be viable to implement in the

short term. Lastly, there was alignment with two of Dell’s quality drivers as most

manageable and most reliable to give the user a supreme customer experience.

3.4.3 Opportunities outside of Dell

The global market for Smart Machines was also considered when evaluating opportu-

nities and, for this, a thorough market and competitive analysis was performed. Using

the established AI taxonomy, research was done to evaluate rising and also working

concepts from leading companies and startups.

To evaluate the potential for opportunities, companies, as shown in Figure 3-3,

were evaluated against four criteria:

1. Product availability

Low consisted of only trials and demos. Medium consisted of already working

with less than 10 clients. High consisted of 1000+ users and/or 10+ use cases.

2. Company or product maturity

Low equals that the company has been established between zero and three years.

Medium refers to a timeframe between four and seven years. High is between

eight and 14 years, and very high is 15+ years.

3. Size of company or product

Very low is established as less than $5M in revenue or less than $10M in funding.
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Low is between $5-$50M in revenue or between $10-$20M in funding. Medium

is between $50-$500M in revenue or between $20-$100M in funding. High is

between $500M-$5B in revenue or between $100-$500M in funding. Very high

consists of $5B+ in revenue or $500M+ in funding. Growth rate of revenues

was also considered.

4. IP

Very low is established as less than 5 patents. Low is between 6-10 patents.

Medium is between 11-50 patents. High is between 51-200 patents. Very high

consists 200+ patents.

Product Product Maturity Size IP Comments 

Platforms 

AWS – Machine Learning Largest data sets, automation & security 

MS Azure – Machine Learning Most flexible, but priciest as it scales 

Google Prediction API Only to offer real-time training 

IBM Watson BlueMix: collection of AI APIs 

HP Haven Big Data analysis platform 

“Data” 
Machine 
Learning 

Context Relevant Specialized in finance and security 

Skytree Big customers: AMEX, Honda, Ebay,… 

Rapidminer Many patents reference this tool 

DataRPM 5 Partners: Cisco, Jaguar, Micropact,… 

Wise.io Specialized algorithm – faster 

Deep  
Learning 

Facebook Focus on image recognition, open-s SW 

Baidu Non-existing commercial 

Google Search, image, NLP & open-source SW  

Microsoft Research: zero UI – invisible interaction 

Prescriptive 
Analytics 

GE Predix Platform: 4K developers; 20K next year 

Shyft Focus on Healthcare 

Ayata Used by: Dell, Cisco, Microsoft 

Y Hat Compatibility with R, Python, and Spark 

River Logic Focus on Healthcare 

Image 
Recognition 

Clarifai Image and Video recogn: e-commerce 

Dextro Video analysis: search, discover, security 

Sighthound Video analysis: security focus 

NLP & NLI 

Nuance Well-established, powers Siri tech 

Idibon Works with: Samsung, UNICEF, others 

Cortical.io Work closely with Numenta 

Gridspace Focus on business conversations 

C	

Figure 3-3: Summarized AI Competitive Analysis. There was a great deal of activity
in “cognitive” platforms, “data” machine learning, and analytics. Some of the most
relevant companies are shown in the figure.

The conclusions on this competitive analysis show that the majority of the compa-
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nies or products are very new and have been in the market for less than three years.

Additionally, platforms are lowering the barrier of entry to the market as algorithms

and technologies for Smart Machines are available on-demand to the public. Moreover,

startups are focusing on a specific vertical to perfect their technology.

The results demonstrated clear opportunities exist for Dell within “Data” machine

learning as already-developed products exist and the maturity of the companies means

there is room to grow and become an important player in this area.
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Chapter 4

Literature Review

In this chapter, seven relevant research papers are reviewed. These research papers

deal with prediction models and methods that have been used for failure prediction in

hardware systems, hard drives, and other computer systems. The prediction methods

described in the papers involve statistical analysis and a variety of machine learning

algorithms. A brief analysis of the work and conclusions of each will be presented in

order to better understand the progress made in this subject.

4.1 Statistical methods in hardware failure

Elkan and Hamerly [21] utilize näıve Bayesian Classifiers in order to overcome the

difficulty of lack of data, since hard drives fail approximately 1% per year. The näıve

Bayes method is a recognized supervised learning method that produces a classifier

able to distinguish between two classes of data. Elkan and Hamerly studied the

Self-Monitoring and Reporting Technology (SMART) system in hard drives, which is

a failure prediction system to predict near-term failure. Typical SMART data includes

variables such as power-on hours (POH), contact start-loops (CSS), seek errors in

track servo (SKE), spinup time (SUT), etc. The SMART system can be regarded

as a statistical hypothesis test based on each individual manufacturers’ developed

thresholds. These thresholds are set based on testing and engineering knowledge about

the operational parameters. According to Hughes et al. manufacturers estimate the
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“failure warning accuracy” (WA), or true-positive rate, of these systems to be between

3-10%, with estimated 0.1% “false alarm rates” (FAR), or false-positive results [22].

The failure events in hard drives do not happen very often, which means a known

statistical distribution is hard to achieve. Elkan and Hamerly achieved a 33-59% WA

with 0.5-0.7% FAR, which is a higher WA than the typical SMART performance, but

with higher FARs.

Hughes, Kreutz-Delgado, and Murray also analyze [22] the SMART system in

hard drives and propose a method that uses a distribution-free Wilcox rank-sum

statistical test, since the problem deals with a rare-occurring event. This statistical

test is recommended when failures are rare and false-positives are very costly. The

proposed rank-sum method is used in combination with multivariate and ORing tests.

The multivariate tests exploit the statistical correlations between attributes, and the

ORing test simply uses a single attribute. The researchers achieve a 40-60% WA with

0.2-0.5% FAR, for both the multivariate and ORing tests [22].

4.2 Statistical and machine learning methods in

hardware failure

Going forward, Murray, Hughes, and Kreutz-Delgado compare statistical and machine

learning methods [23] to try to predict hard-drive failures in computers by utilizing

special attributes from the SMART system. They compare non-parametric statistical

tests (rank-sum, reverse arrangements, and a proposed algorithm) as well as machine

learning methods (SVMs and unsupervised clustering). They propose a new algorithm

based on the multiple-instance learning framework since this study is considered a

two-class semi-supervised problem. Multi-instance learning deals with objects that

generate many instances of data, and an object’s data is collected in a “bag,” which

receives a discrete value of 0 or 1 depending on the prediction problem. Additionally,

they use a simple Bayesian classifier and pair it with the multiple-instance framework

to create the multiple instance-naive Bayes (mi-NB) algorithm. Feature selection for
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the models is done through the statistical reverse arrangements test and selecting

such features depending on their relevant z-scores. The prediction models are created

with SVMs, unsupervised clustering (Cheeseman and Stutz’ Autoclass package [24]),

rank-sum tests, and the mi-NB algorithm. They ran experiments using 25 attributes,

single attributes, and a combination of attributes. The results show that SVMs provide

the best performance with 51-70% WA and 0-6% FAR, followed by the rank-sum

tests with 28-35% WA and 0-1.5% FAR, mi-NB with 35-65% WA with 1-8% FAR,

and clustering with 10-29% WA with 4.5-14% FAR. Murray et al. highlight that the

achieved results of non-parametric statistical tests are to be noted, since they come

with great computational efficiency considering that SVMs take 100 times longer in

training and testing [23].

Motivated by the growing complexity and dynamism of computer systems, Salfner,

Lenk, and Malek [25] report a survey of over 50 methods for failure prevention in

hardware. They developed a taxonomy for failure prediction approaches for hardware

and software, which can be represented with the following stages:

1. Failure Tracking

It is based on the occurrence of previous failures. Methods included are proba-

bility distributions and co-occurrence.

2. Symptom Monitoring

It is based on periodical analysis of the system. The key concept is that through

system monitoring, the side-effects of individual hardware degradation, which

are very difficult to catch, can be detected. Methods included are function

approximations (stochastic models, regression, and machine learning), classifiers

(Bayesian and fuzzy), system models (clustered models and graph models), and

time series analysis (regression, feature analysis, and time series prediction).

3. Detected Error Reporting

It is a non-active method, driven by events logged in the input data when an

error occurs. Methods included are rule-based approaches, pattern recognition,

statistical tests, and classifiers.
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4. Undetected Error Auditing is actively searching for incorrect states of the

system that can potentially predict failures within the system.

Each method applies differently depending on the prediction problem and use case the

user wants. Salfner et al. [25] do not provide remarks on WA or FAR of the different

methods as the main purpose is to provide a framework for methods and their use

cases. They conclude that proactive fault management will be the key that enables

the next generation of dependability improvements.

4.3 Machine learning methods in hardware failure

Turnbull and Alldrin [26] explore the prediction of hardware failure for servers with

the hypothesis of being able to use sensor data for such predictions. To predict failures

they use the servers’ sensor logs for positive (failed) and negative (did not fail) cases.

Each log is composed of individual entries that are recorded every approximately 75

seconds and contain sensor data, such as different board temperatures and voltages.

These entries also record any failures. The feature vectors from these entries are

extracted during a “sensor window,” which is a specific amount of time when entries

are collected. Each feature vector is associated with a “potential failure window” that

comes after the “sensor window” as time continues. These vectors are used as input

in a Radial Basis Function (RBF) network, a type of a neural network, to solve a

two-class classification problem. They use 18 hardware sensors to build 72 features

that include the mean, standard deviation, range, and slope. They achieve an 87%

WA with a 0.1% FAR. They conclude that sensor data can be used to predict failures

in hardware systems. An important remark they also make is to always consider the

cost of prediction accuracy in false positive rates as well as working in a context of

infrequent hardware failure [26].

Zhu et al. [27] provide a new approach to predict failure in large scale storage

systems through SMART data analysis. They propose a new Backpropagation (BP)

neural network and an improved SVM that achieve higher WA with considerably low

FARs. They utilize 10, out of the 23, SMART attributes and their change rates as
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features. The SVM is built using LIBSVM [28] and achieves a 68.5-95% WA with a

0.03-3.5% FAR. The BP neural network is composed of three layers and 19, 30, and

1 nodes, respectively, with a target value of 0.9 for healthy drives and 0.1 for failed

drives in the output layer node. This BP neural network model achieves a 95-100%

WA with 0.5-2.3% FAR. Their proposed models achieve very high WA with some

tradeoffs in the FARs.

One of the most recent works in hard drive failure prediction developed by Li et

al. [29] involves Classification Trees (CT) and Regression Trees (RT). They achieve

some of the best WAs with low FARs, and provide additional capabilities for the

hardware’s health assessment. To build the trees for the models, they utilize the

SMART attributes, as well as their change rates, and their targets’ “good” or “failed”

values as input features. For their models, they utilize “information gain” as the

splitting function for the nodes. This split function looks through all the SMART

attribute values and finds the best split that maximizes this “gain in information.” The

gain in information is calculated by comparing the entropy of information that each

node contains. They continue to grow the tree by recursive partitioning until a node

contains only one class or the node will not satisfy the split conditions. Additionally,

the RT model is built similarly to the CT, but instead of using the “information gain”

to split, they utilize “minimum squares” about the mean. Also, the RT model uses a

quantitative target value rather than a classification of “good” or “failed” to describe

the drive’s health status. The CT model achieves a 94-96% WA with .01-.1% FAR

and the RT model achieves a 63-96% WA with .01-.15% FAR.

As seen in the previous section, the progress for predicting hardware failure

encompasses many areas and great advances and work have been done particularly in

modeling hard drive failures. Different statistical and machine learning methods are

used depending on the data availability, computing processing efficiency, and the type

of prediction problem to solve.
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Chapter 5

The Data Science Pipeline

Having developed a solution and undertaken a systematic approach, we use this

experience to explicate a data science process, in order to understand the different

stages and steps required to go from a collection of data to a prediction model. Overall,

the proposed process consists of six stages and steps, as shown in Figure 5-1. In the

following subsections, we will go through each stage and explain it in the context of

our particular goal: building a predictive model for hardware failure.

5.1 Raw data

In a typical enterprise, data is generated by a diverse array of actors including sensors,

people, and computers, and appears in a variety of different formats, ranging from

logs to databases to flat files. This data is usually stored with no particular goal in

mind. It is often either unorganized, or organized in such a specific manner that it

cannot be broadly generalized.

In our particular scenario, Dell generates raw data from many sources. We will

focus on one in particular: customers who have authorized the collection of sensor data.

This data is generated from hundreds of hardware sensors inside computer systems

and is then uploaded to a database. One of the main databases containing this type

of raw data is called DDSAC, or “Dell Data – Support Assist Client.” Table 5.1 lists

a summary of the characteristics from a snapshot of the DDSAC database between
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Figure 5-1: Proposed data science process.

February 2015 and November 2015.

Tables 40
Total Entries (Rows) 23,588,020
Data Space 3,571 MB

Table 5.1: DDSAC Summary between February 2015 and November 2015.

This data is organized in many different tables within the DDSAC database.

Table 5.2 lists a few additional databases capturing data in Dell’s SQL servers.

5.2 Study-specific data extract

Depending on which problem is of interest, this raw data could have many different

uses. For example, one data scientist might be interested in predicting hardware

failures, while another might wish to predict usage patterns. Solutions to both of

50



Stage Files Size (rows) Size (MB)
1Raw data DCSAI

DDSAC
Dispatch Information
SMART

153.3M
23.6M
23,904
1.5M

10,344
3,571
1
617

Table 5.2: A set of databases in Dell’s SQL servers. DCSAI (Dell Client Support
Assist Internal), DDSAC (Dell Data Support Assist Client), Dispatch Information
(dispatched hardware components for DDSAC), SMART (Hard drive sensor readings).

these problems could be derived from the same raw data. Once a particular goal is

chosen, a data scientist’s first task is to extract data that is applicable to the relevant

study or question.

With a specific goal in mind–predicting hardware failures–we selected specific data

tables that could contain useful information for solving this problem. In this particular

case, we chose DDSAC1, which contains the authorized external customers’ data. For

these customers, we also have the Dispatch Information table, which has specific data

on hardware dispatches, or shipments, for these customers. Since these dispatches are

usually called in to replace a failed or malfunctioning component, we considered this

information to imply that the component failed prior to its dispatch date.

We then investigated the DDSAC database to select a subset of the 40 available

tables. Below, we describe some key points of the data, in order to to better understand

its structure and characteristics:

1. ID that uniquely identifies a computer system

Computer ID is an attribute that uniquely identifies a specific system (a desktop

or laptop) and its subcomponents across time.2

2. Tables with sensor data associated with each hardware component

Within DDSAC, there is a corresponding table with sensor data specifically for

1In contrast, we could not use an even bigger database–DCSAI, which holds seven times the
amount of data points than DDSAC (over 150M rows vs. 23M rows). This data in DCSAI is
from Dell’s internal employees computer systems. Even if it shows Alerts, there was no dispatch
information available for these computer systems or no way to detect an actual failure. We selected
DDSAC due to this associated dispatch information, which we considered to be a proxy for failure.

2This information does not identify the user but only the specific hardware. It is classified as
non-personally identifiable information (non-PII) at Dell and in the industry widely.
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each hardware component being monitored. For example, Disk.dbo is a table

for the hard drive that contains data from different sensors monitoring its use.3

Similarly, each table within the database contains a variety of fields; combined,

they contain about 450 different fields. These tables either have a Computer ID

or a DataPoint ID, which allows us to link them to a specific system.

3. DataPoint ID

A DataPoint ID uniquely identifies a collection of data4 at a specific time point.

The DataPoint ID is a key identifier, and exists in approximately 95% of the

tables. In many cases, DataPoint ID is recorded alongside Computer ID, thus

identifying exactly which system the data was collected from. When Computer

ID is missing in any of the tables, it can be retrieved by finding all the occurrences

of the corresponding DataPoint IDs and finding an associated Computer ID in

any of these occurrences. Thus, we are always able to identify which computer

system a particular data point belongs to.

4. SensorData table

Even though there are individual tables recording the sensor data corresponding

to the usage of an individual hardware component, the SensorData table has the

data from different components’ sensors. The SensorData table has 132 different

fields, which contain readings from sensors as well as basic sensor and system

information. One of these fields is DataPoint ID.

In the SensorData table, there are 919,667 DataPoint ID records (258,850 records

are from desktops, 660,744 are from laptops, and the rest are unclassified). There

are 342,287 unique Computer IDs. 101,649 of these are desktops, 240,607 are

laptops, and the remainder of them are unclassified.

5. Dispatch table

The other essential table for predicting hardware failure is “Dispatch Information.”

3ePPIDs (Electronic ID) allow us to uniquely identify a subset of these individual components.
For example, hard drives, batteries, wireless cards, and motherboards are tracked, while cables, fans,
and monitors are not.

4A collection of data is sensor readings at or up until that time point.
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This is a list of parts dispatched to a customer, and includes the Computer ID,

the dispatch date, and the dispatched parts. Each Computer ID may have one

or multiple dispatched parts (e.g. motherboard and hard drive).

The Dispatch Information table contains 7,348 unique5 Computer IDs. These

23,094 dispatch events come from the 342,287 total tracked computers on DDSAC,

which shows around a 2.15% failure rate in about 9 months time. As can be seen

in Figure 5-2, hard drives and motherboards are two of the parts most affected

by hardware failure.

Figure 5-2: The frequency of dispatches of different components closely follows the
Pareto principle. As seen, hard drives are the most frequently dispatched component.

Data collection process: As shown in Figure 5-3, hardware sensor data is generated

and recorded through two types of events: continuous and discrete. In a continuous

process, data is generated and recorded in the corresponding tables on a daily basis.

In the discrete process, data is generated only when there is a trigger, such as an

alert or failure, and is recorded in corresponding tables, such as the SensorData or

Alert tables. Currently, all this recorded data is uploaded to the SQL server only

5Out of the 23,094 total dispatch events, which do not necessarily mean failures, but we will
consider hard drive dispatches as a proxy for hard drive failures.
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when there is a trigger, leaving much of the data on the systems. Thus, we only have

DDSAC data when there have been triggers and alerts.

Figure 5-3: There exist practically two data generation and acquisition paths that are
triggered by a daily rule or an unexpected alert or failure.

To recap:

• Our goal is to predict hardware failures.

• This study considered all data captured in SQL servers from February 2015

through November 2015.

• We selected the DDSAC database because dispatch information was available

for the computers in this database.

• Of the 40 different tables contained within the DDSAC database, for building

predictive models for hardware failures, we selected just 25. Table 5.3 shows the

characteristics of these tables.
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Stage Files Size (rows) Size (MB)
2Study-specific data ex-
tract

• dbo Alert.csv
• dbo AlertDetail.csv
• dbo BTModule.csv
• dbo Battery.csv
• dbo Bios Internal Logs.csv
• dbo Cable.csv
• dbo CableChangeHistory.csv
• dbo CrashInfo.csv
• dbo DIMM.csv
• dbo Disk.csv
• dbo DTFan.csv
• dbo HardwareChangeLog.csv
• dbo LanAdapt.csv
• dbo LogicalProcessor.csv
• dbo Monitor.csv
• dbo MSBugCodes.csv
• dbo NBFan.csv
• dbo Partition.csv
• dbo SensorData.csv
• dbo SMART.csv
• dbo SystemUnit QITeam.csv
• dbo SystemUnit.csv
• dbo Thermistor.csv
• dbo WlanAdapt.csv
• dbo WWAN

• 356,858
• 111,392
• 311,307
• 89,758
• 452,049
• 2,346,483
• 16,475
• 146,819
• 1,950,698
• 1,333,304
• 171,976
• 732,211
• 917,052
• 907,378
• 4,271,891
• 899,053
• 265
• 320,623
• 4,512,656
• 1,125,679
• 225,635
• 341,285
• 1,232,045
• 816,499
• 557

• 121
• 21
• 112
• 14
• 64
• 226
• 2
• 56
• 254
• 203
• 16
• 79
• 1,024
• 133
• 134
• 86
• 0
• 27
• 293
• 415
• 13
• 29
• 125
• 126
• 0

Table 5.3: Study-specific data extract description.
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5.3 Problem-specific data

Our next stage is to define a specific predictive problem. We have a number of options:

for example, we could predict hard drive, motherboard, or battery failures. We chose

to predict hard drive failures because this task fits three criteria:

1. The frequencies of dispatch for different components, as shown in Figure 5-2,

show that hard drives are the most commonly dispatched component.

2. The hard drive is a critical system component containing locally-stored data

and programs.

3. It provides the maximum possible training examples available for training a

model.

For this specific prediction problem, two tables, Dispatch Information and Sensor-

Data, are used. The Dispatch table provides data on hardware components shipped

due to failure. To reiterate:

1. The Dispatch table gives us the time point when a hard drive was dispatched to

a customer.

2. The SensorData table provides information regarding how the specific system

(identified via Computer ID) was operating (through multiple data collection

points identified by DataPoint IDs) before it failed.

Table 5.4 shows a description of the files finally used for building predictive models

for hard drive failures. Table 5-4 and Table 5-5 show a snapshot of these two files.

Stage Files Size (rows) Size (MB)
3Problem-specific data • newpd log data large.csv

• DispatchInfo Parsed.xls
• 727,740
• 23,904

• 633
• 1

Table 5.4: Problem-specific data description.
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Date

ComputerID
X432121
X812114
ZK1434

.

.

.

ComponentID Begining Ending Sensor 1 Sensor 2 ....... Sensor 114

Figure 5-4: Problem-specific data file (newpd log data large.csv). It has the Computer
ID, DataPoint ID, timestamps, and readings from multiple sensors.

ComputerID

X812114
ZZ4614

.

.

.

12/14/14
11/1/15

.

.

.

Hard Drive
Motherboard

.

.

.

Dispatch date Commodity

Figure 5-5: Problem-specific data file (DispatchInfo Parsed.xls). It has the Computer
ID, Dispatched Commodity (e.g. hard drive, motherboard, etc.), and the date of
dispatch.
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5.4 Data slices

Cleaning and curation: Next, we prepare the data set for feature engineering and

machine learning. First, the files need to be cleaned, linked, and curated. This process

consists of the following steps:

• Removing columns that had no data.

• Removing columns that had no relation to hard drive failure.

• Standardizing date and time formats.

• Eliminating empty rows.

• Linking, or reconciling files that had the same attributes under different names

(such as Computer ID and ComputerID).

Slicing: After curation and linking, we slice the data to remove unusable data or

data that could interfere with the prediction model. Specifically, for each Computer

ID we remove the sensor readings that correspond to time after the dispatch date.

Thus for each Computer ID, we construct a data slice that has all the sensor readings

prior to the dispatch date. Figure 5-6 shows the process of slicing and removing the

post prediction data. Table 5.5 shows a summary of the sliced files, which are then

taken through to the next stages.

Stage Files Size (rows) Size (MB)
4 Data

slice
• Sensor data aggregated.csv
• Outcomes.csv

• 42,313
• 12,483

• 4
• 0

Table 5.5: Data slice file description.
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Dispatch

Date

ComputerID
X812114
X812114
X812114
X812114
X812114
X812114

 

Begining Ending Sensor 1 ....... Sensor 114
10/3/14
10/8/14
10/22/14
12/12/14
12/24/14
1/24/15

10/3/14
10/8/14
10/22/14
12/12/14
12/24/14
1/24/15

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

....

X812114 12/14/14 Hard Drive

Figure 5-6: Process of forming a slice of data corresponding to a specific computer
and then removing the sensor readings after the dispatch date. These sensor readings
cannot be used for building the predictive model as they happened after the dispatch
event.

59



5.5 Labeled training data

A predictive model will need features to be trained with. With the data selected

and refined, features are now generated from the sensor readings. Features can be

generated in a broad number of ways, and feature generation is a field unto itself. A

few possibilities include using the readings themselves, using mathematical functions

to modify the readings, and running specialized algorithms. Regardless of the methods

used to generate these features, the user or program will end up with labeled training

data files. Each row in this data file is a labeled example (hardware failure or not) for

a specific computer system, and has these features as columns.

Traditionally, feature generation is a manual and time-consuming process. Though

feature generation tools do exist, different tools offer different capabilities, and some

popular data science toolkits don’t offer any at all. In this particular case, two different

feature generation methods were considered to develop the labeled training data.

The first method uses the deep feature synthesis algorithm, presented by Kanter

and Veeramachaneni [4], to create relevant features for the model. Features created

with this algorithm include applied functions to sensor readings. These functions are

means, sums, standard deviations, and maximum and minimum values, among others.

The output file is DFSFeatures.csv. In total, 650 different features were created with

this algorithm. Table 5-7 shows the structure of the created table.

In the second method, Microsoft Excel was used to filter the unique Computer IDs.

We selected the first entry for every Computer ID in the file, organized in descending

order by time. This data set represents the first reading of data available for prediction.

Features generated using these first readings are considered näıve features. The output

file is NäıveFeatures.csv, which includes all sensor data, along with a label if the

hardware failed as pictured in Table 5-8. Table 5.6 shows a description of the output

files with the created features.
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Stage Files Size (rows) Size (MB)
5 Labeled

training
data

• NäıveFeatures.csv
• DFSFeatures.csv

• 12,483
• 12,483

• 5
• 40

Table 5.6: Feature table description.

DFS Features
ComputerID Label Feature 1 Feature 2 ....... Feature 50

Figure 5-7: Labeled training data table (DFSFeatures.csv) has the Computer ID field,
650 engineered feature fields, and Label.

Figure 5-8: Labeled training data table (NäıveFeatures.csv) has the Computer IDfield,
110 sensor fields, and Label.

5.6 Models and results

The last stage consists of employing a machine learning algorithm, which utilizes

labeled training data in order to train a model. Machine learning is a broad topic in

itself, and as previously mentioned, there exist a plethora of model-building algorithms

and approaches, depending on the problem type.

Once a model is trained, it is scored and evaluated according to its ability to

predict. Depending on our model’s accuracy (WA and FAR as explained in Chapter 4),

we can continue iterating with other features and tuning algorithmic parameters until

the desired accuracy is obtained.

Different tools were used to create these models. We first used FeatureLab, which

generated a tenfold cross validated model that achieved a 0.72±0.04 WA (AUC).
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The model used a Stochastic Gradient Descent (SGD) algorithm. Some of the most

relevant features were:

• SUM(Readings.CPU 0 PCT)

• LAST(Readings.AC Adapter Type W)

• MEAN(Readings.S4 mins)

• STD(Readings.Avg ThreadCount)

Figure 5-9 shows a summary of the resulting files, tables, and characteristics that

result from following data science process as previously described.

Figure 5-9: Data science process and results. Note the reduction in size of data from
3.6GB to 40MB and 5MB by the time we bring it to a machine learning modeling
method.

After finalizing the data science approach, we developed this proposed data science

process, and carefully laid out the details to enable this process to be applied to any
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prediction problem. Figure 5-10 shows the characteristics of the proposed end-to-end

data science solution that arises from this process.

Figure 5-10: Proposed end-to-end data-driven solution.
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Chapter 6

Machine Learning Tools

In this chapter, we utilize different platforms and software, referred to as “tools,” to

generate predictive models for our problem, while taking note of their differences in

capabilities. We utilize Microsoft Azure, Amazon Machine Learning, IBM Watson

Analytics, Nutonian Eureqa, BigML, and Skytree. Each of these platforms expect

labeled training data as input1. The labeled training data are generated using two

different methods:

1. We used FeatureLab’s Deep Feature Synthesis (DFS) algorithm [4] to generate

features from the sensor readings and form labeled training examples. We call

these DFSFeatures.

2. We created features by following a näıve approach. We took the first available

sensor readings for each data slice (see Section 5.4). We call these NäıveFeatures.

Training data summary: It is important to note that the data from the data slices

is imbalanced, as there are 9,878 cases of “0” and 2,604 cases of “1.” This means that

79% of the attributes in our target, “Label,” are non-failures, and 21% are failures.

Goals: Each of these tools offer a variety of services for data in addition to machine

learning and evaluation of the trained models. They could be broadly categorized into

5 functions:

1Except FeatureLab, which can generate features and could start with the data slices as input.
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1. Ingestion and data visualization.

2. Data preparation.

3. Modeling and tuning parameters for training models.

4. Model evaluation.

5. Model analysis.

With our experiments, our core focus is on loading the data, training a machine

learning model, and evaluating the trained model in terms of predictive accuracy.

Thus we limit ourselves to stages two, three, and four. Our three goals are to evaluate:

1. Whether machine learning services provided by these tools can overcome the

lack of feature engineering.

2. For the purposes of modeling and evaluation, what value these tools add com-

pared to open-source tools like scikit-learn based machine learning software.

3. Which part of the end-to-end data science process these tools address.

What we are not evaluating:

1. Usability and User interface.

2. Input data format and size.

3. Model analysis.

4. Deployment functionality.

5. Language integration.

6.1 Ingesting and preparing the data

Each tool had different settings for uploading the labeled training data and manipulating

it afterwards. The data preparation steps we performed in the specific tools are

summarized in Table 6.1.
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Table 6.1: Data ingestion and preparation. For all tools, Labeled training data was
uploaded as a csv file. Some tools offered options to select columns and features,
handle missing values, among others. This table shows specific steps we took in each
tool to prepare the data for machine learning.

Tool Availability Data Preparation
Microsoft Azure Machine Learning SaaS -Drop columns with entire

missing values
-Missing values set to mean
-Feature selection: Select top
45% of features using Pearson
correlation between columns
and label (target)

Amazon Machine Learning SaaS -Column selection possible
-Modify column data type
(Computer ID to categorical,
Label to Binary)

BigML SaaS -Reduced DFSFeatures to first
5,014 rows (40% of original
size)2

IBM Watson SaaS -Used Azure to identify top 49
influential features using Pear-
son correlation between sensor
data and label (target)3

Nutonian Eureqa Desktop -Normalize data4

-Missing values set to mean
Skytree Desktop -None

2The tool imposed a constraint on the data size we could feed to it. This was because we were
using a free version.

3The limit on number of features to be used was placed by this tool. However, no feature selection
process or guidance was provided. Again, this limitation was perhaps for the free version we were
using.

4For automatically-detected columns based on data; subtracted mean and divided by the standard
deviation.
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6.2 Modeling and choosing parameters

Once the labeled training data was uploaded and prepared, we then built predictive

models by setting the hyperparameters as listed in Table 6.2.

Table 6.2: Modeling and parameter choices. The tools allowed different levels of
customization for hyperparameters. Highlights: Skytree offered automatic modeling
techniques and parameter tuning. IBM Watson did not allow setting parameters.

Tool Modeling Technique Parameter Settings

Azure ML
Decision tree - Resampling method = bagging

- Number of decision trees = 8
- Maximum depth of DT = 32
- Number of random splits per node = 128
- Minimum number samples per leaf node = 1

Neural Network - Number of hidden nodes: 100

- Learning rate = 0.1

- Number of learning iterations = 100

- Initial learning weights diameter = 0.1

- Momentum = 0

- Normalizer type = MinMax

Amazon ML Logistic Regression - Maximum ML Model size = 2000MB

- Maximum data passes = 100

- Regularization = L2

- Regularization amount = 1e-4

- Data shuffle = Auto

BigML Decision Tree - Object weights 1 to 19 (Label 1)
- Object weights 19 to 1 (Label 0)
- Node threshold = 512

IBM Watson Decision Tree - Automatic

Nutonian Symbolic Regression5 - Chose formula building blocks: Constant,

Input variable, Addition, Subtraction, Mul-

tiplication, Division, Logistic function, Step

function, If-then-else, Minimum, Maximum

Skytree Gradient Boosted
Tree

- Automodel (can chose: GBT, RDF, GLM,

SVM). Skytree chose GBT6

- Search iterations = 10

- Classifier testing; F-score = 0.1

5Symbolic regression is a specialized machine learning algorithm developed to identify non-linear
functional relationships in the data.

6Model parameters selected by Skytree. Parameters for FirstSensorData: Number of trees = 58,
Tree depth = 0, Max splits = 14, Learning rate = 0.104905, Regularization bins = 141, Probability
threshold = 0.2152. Parameters for DFSFeatures: Number of trees = 234, Tree depth = 4, Learning
rate = 0.126931, Regularization bins = 192, Probability threshold = 0.1984.
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6.3 Evaluating the trained models

Next, we evaluated the trained models. They were evaluated against the data they

were trained with (train data) and against the data they were not trained with (test

data). Different tools offered different options for the evaluations. Some offered the

ability to split the data into train and test via a parameter. Some offered the ability

to do k − fold cross validation. The tools offered different settings as shown in Table

6.3.

Evaluation metrics The trained predictive models were evaluated with different

metrics, which were:

1. AUC (Area under the curve)

The AUC is a way to measure the accuracy of the model. As seen in Figure

6-1, it is the total area under the ROC (receiver operating characteristic) curve.

The ROC curve is plotted on a graph that represents the false-positive rate

on the x-axis and the true-positive rate on the y-axis. It means that the area

measures discrimination, which is the ability of the model to correctly classify

one category against another.

Figure 6-1: The AUC metric is the area under the ROC curve.
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2. FPR (False-positive rate): The FPR is the percentage of examples belonging

to the negative class that have been incorrectly classified as a positive result. It

is calculated with the following equation: FP
(FP+TN)

, where FP is the number of

“false-positives” and TN is “true-negatives.”

3. Precision: This is also known as the “positive predictive value.” It is calculated

with the following equation: TP
(TP+FP )

, where TP is the number of “true-positives”

and FP is the number of “false-positives.”

4. Recall: Recall is also known as the “true-positive rate.” It is calculated with

the following equation: TP
(TP+FN)

, where TP is the number of “true-positives”

and FN is the number of “false-negatives.”

Table 6.3: This table shows the evaluation techniques, which included cross validation
for some tools, as well as splitting the data into train data and test data for building
and evaluating the predictive models. Data was always split as: 70% for training and
30% for testing. Only three tools - Nutonian, Skytree, and Azure offered ability to do
cross validation.

Tool Evaluation technique
Microsoft Azure Machine Learning - Cross-validation with 10 folds

- Splitting*
Amazon Machine Learning - Splitting**

BigML - Splitting
IBM Watson - Automatic**

Nutonian - Automatic cross-validation
- Splitting*

Skytree - Cross-validation with 10 folds
- Splitting*

* Offers option to change split settings
** Does not offer option to change split settings
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6.4 Results

Each predictive model was evaluated against these four particular metrics. The models

were evaluated against the train data (70% of the data) and the test data (30% of the

data), as shown in Table 6.4 and Table 6.5.
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6.5 Key findings

Having utilized these different machine learning tools, several notable findings emerge.

We divide these findings into two sets: the first provides insights about the model

development process, while the second provides an evaluation of the machine learning

components of these tools.

Model development process

1. Feature engineering provides a significant boost in predictive accu-

racy. Features developed through the DFS algorithm provided valuable infor-

mation to create more accurate predictive models7. When using DFSFeatures

as the labeled training data, there was a notable improvement in the AUC for

the ROC curve. As seen in Table 6.6, feature engineering increased AUC by an

average of 13% when models were evaluated on train data, and by an average of

11% for models evaluated with test data. Arguably, since the feature generation

process used multiple sensor readings rather than just the first available sensor

readings (as in näıve features), this finding may be intuitive.

Table 6.6: AUC DFSFeatures vs. AUC NäıveFeatures shows a vast improvement in
the models’ predicting accuracy when using DFSFeatures instead of the NäıveFeatures.

AUC improvement

Train data - 70% Test data - 30%
Azure ML - Decision Tree 10.8% 7.3%

Azure ML - Neural Network 9.2% 7.2%
Amazon ML 0.2% 11.5%

BigML 20.5% 3.2%
Skytree 19.7% 18.7%

Average 12.1% 9.6%

All data - 100%
Nutonian Eureqa 16.1% 16.1%

Total Average 12.8% 10.7%

2. Model selection and hyperparameter tuning cannot overcome the lack

of feature engineering. Of all the tools, only Skytree offered the ability to

7Although we used the deep feature synthesis algorithm in this thesis, we envision similar benefits
could be achieved with manual feature engineering.
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automatically select models and tune their hyperparameters as seen in Table 6.2.

The “automodel” option selected a Gradient Boosting Tree algorithm to train

the model out of the available classification algorithms8. With NäıveFeatures

it was able to generate a predictive model with an AUC of 0.83 (on test data,

refer to Table 6.4), a recall of 0.24, at a FPR of 0.01, while other tools, even

with the DFSFeatures, were only able to achieve a 0.72 AUC9 as shown in Table

6.5. However, when Skytree’s tool was given DFSFeatures it performed even

better, achieving a 0.98 AUC and a 0.84 recall at a FPR of 0.01. This means an

increase of 19% in the AUC and a 254% boost in recall, while maintaining an

FPR of 0.01. Hence, while model tuning can enable better accuracies even from

simple NäıveFeatures, there is a possibility that engineered features can enhance

the accuracy and evaluation metrics even further.

Evaluation of the tools

1. All these tools combined only solve one small stage of the data science

endeavor. All of the machine learning tools needed the input of labeled training

data to start training a machine learning model10. Therefore, these tools can

only be used after the completion of the first four stages of the data science

process (described in Chapter 5 and shown in Figure 5-10). A majority of our

time was spent in these first four stages, and we imagine that most data science

endeavors are similar. Further, if we wish to change the prediction problem from

predicting hard drive failures to motherboard failures, much of the work has

to be done outside of these tools. Arguably, a tool that can enter the process

earlier will provide more flexibility and agility.

2. A few lines of python code can replace the core machine learning

functionality provided by these tools. A few lines of code written using a

popular package in python called scikit-learn can perform most of the modeling

functions these machine learning tools offer. These include splitting the data into

8Skytree offered the option to chose between GBT, RDF, GLM, and SVM algorithms.
90.72 AUC was achieved using FeatureLab’s modeling method as reported in section 5.6.

10Except FeatureLab, which can work with data slices and generate labeled training data.
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train and data sets, performing cross validation, training a model, and testing a

model. Below we provide a simple code11 snippet that, when provided a feature

matrix in X and target label in y can perform all the functions mentioned here.

1 from s k l ea rn import svm

2 from s k l ea rn . c r o s s v a l i d a t i o n import c r o s s v a l s c o r e

3 from s k l ea rn . met r i c s import r o c a u c s c o r e

4 from s k l ea rn . c r o s s v a l i d a t i o n import t r a i n t e s t s p l i t

5

6 #S p l i t t i n g the data in to t e s t and t r a i n

7 X train , X test , y t ra in , y t e s t = t r a i n t e s t s p l i t (X, y , t e s t s i z e

=0.33)

8

9

10 #Choose a c l a s s i f i e r and i t s hyperparameters

11 c l f = svm .SVC( ke rne l=’ l i n e a r ’ , C=1)

12

13 # Perform c r o s s v a l i d a t i o n

14 s c o r e s = c r o s s v a l s c o r e ( c l f , X train , y t ra in , cv=10, s c o r i n g=”

roc auc ” , n jobs=−1)

15 cv auc = s c o r e s . mean ( )

16

17 # Learn a c l a s s i f i e r v ia f i t method

18 c l f . f i t ( X train , y t r a i n )

19

20 # Test the c l a s s i f i e r

21 y p r e d i c t = c l f . p r e d i c t ( X tes t )

22 pr in t r o c a u c s c o r e ( y t e s t , y p r e d i c t )

3. The tools provided other important services. However, these tools offered

additional services. One consistent service among all SaaS-based offerings was

persistent storage of data and models, allowing a user with an account to login

and reuse the models that s/he previously trained. Additionally, these tools

presented intuitive graphical user interfaces, and enabled easy evaluation and

11The code snippet was provided by Max Kanter.
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execution of models on new data. However, the tools varied a lot in visualization,

exploration, and analysis techniques, both for data and models.

4. The tools varied in how they evaluated models. There is general agree-

ment in the machine learning community about how to train and evaluate

classification models, and it was surprising to see that these tools did not follow

such standards. Some of them did not offer a capability to cross validate models.

Some did not allow the user to specify the train/test split. Others did not allow

splitting the data, and expected that the users do that outside the tool. This is

described in Table 6.3. These variations made it harder to compare the accuracy

of solutions that were developed on them.

5. For most predictive problems, the size of the labeled training data

will likely be small. This allows for training a model on a desktop.

Arguably, these tools were developed for large/big data sets and offer scalable

approaches for training models. Hence, the tools cannot be compared to an

open source machine learning software like the one above, since the previous

machine learning software does not provide immediate scaling. However, in

our experience, while the raw data and the study-specific data comprised whole

gigabytes, by the time we selected the prediction problem, generated the features,

and assembled the labeled training data, the data size shrank to a couple of

megabytes, as seen in Figure 5-9. Data size aside, we only had 12,000 training

examples - a dataset for which we could train models even on an off-the-shelf

computer.
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Chapter 7

Financial Impact Analysis of the

Proposed End-To-End Data-Driven

Solution

The potential to deploy an integrated end-to-end solution for hardware failure pre-

vention can reap tangible monetary benefits for Dell as well as benefits such as

better brand reputation and the providing of a better customer experience. Moreover,

Dell’s suppliers are also substantially impacted by this problem. In order to quantify

the financial opportunities, the following two business cases are presented with a

conservative approach:

1. The first case encompasses Dell and the hardware component suppliers.

2. The second case only considers Dell.

7.1 Incurred costs

Dell and the hardware suppliers currently have incurred costs of manufacturing or

buying, storing, shipping failed hardware components to be replaced, attending to

customers’ calls and requests, among others. As mentioned, two business cases are

developed to estimate the incurred costs from hardware failures.
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In the first case, a moderate approach is taken and only two relevant costs are

considered. Theses costs that are taken into account are replacing the physical

hardware components and handling the calls related to the failures. The weighted

average hardware component cost for the analyzed laptops and desktops is assumed

to be $34. “Laptops and desktops” will be referred to as “systems.” Based on the

extracted and cleaned data, systems have an 8.2% yearly failure rate, but 33% of

these failures are considered to be due to accidents [30]. Therefore, only 5.5% is the

“effective” failure rate for hardware components. The user base consideration for this

case is composed of two segments: new users and previous users. The new user base

accounted accords with the deployments of new systems, which amounts to 18.8M

new systems per year. From the previous user base only an estimated 30% of users

are accounted for from the two previous years, as they are considered to have bought

an extended warranty [31], which usually lasts three years. This brings the active user

base to a total of 30M+ users. The hardware manufacturers, including Dell, cover

all these systems under a warranty. Utilizing the previous numbers, the calculated

cost for all hardware component suppliers exceeds $56M per year for failed hardware

components. Another important cost in this case is attending to customer calls. At a

calculated rate of 15M calls per year, an average call time of 25min, and a conservative

cost of $17 per hour per call [32], the total cost for attending to these calls from

failures exceeds $107M per year. Therefore, as seen in Figure 7-1, the overall estimated

expense to Dell and their suppliers is approximately $163M per year for hardware

failure components and handling the respective calls.

On the second case, Dell covers batteries under warranty. The assumed battery

cost is $25. The failure rate is considered to be 1.9% of hardware failures, which means

that systems fail 0.16% of the time due to a battery failure. Also taking into account

that 33% of the failures are due to accidents, the considered “effective” failure rate

is 0.103%. This case considers the same user base for new users and previous users

as the previous case, but also considers a mix of 50% laptops and the rest desktops,

making the active user base 15M+ users. With the previous numbers and assumptions,

the incurred hardware costs to Dell for battery failures are estimated at $0.4M per
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year. Also, the more relevant cost component is the customer service to attend to

calls when there is a battery failure. Considering the same assumptions for the call

center as before, but considering only 0.3M calls for batteries, the cost to handle these

failures is approximately $1M per year. Hence, the hardware and customer service

costs for Dell to deal with battery failures are estimated to be $1.4M per year, as seen

in Figure 7-1.

7.2 Investment

The investment necessary to develop and deploy the data driven tool is estimated to

be between $0.75M and $2.1M, depending on the reach of the process and service.

These amounts are based on previous project experience and taking into account the

required tasks and time to complete them by working function. Most of the investment

cost consists in labor costs. As seen before, the technology to integrate this solution is

already available on the market and could be utilized at very low cost.

7.3 Impact

The proposed end-to-end solution can be utilized to effectively monitor the hardware

components in a system and successfully predict failures with high WAs. In this case,

the developed models with FeatureLab provide an accuracy of 70%+ in correctly

predicting the failure of a hard drive, which is the main hardware component that fails.

For the impact analysis, the accuracy of the developed model is extrapolated to the

rest of the components. Taking a conservative approach, the prevention of hardware

failing is assumed to have an overall 50% effectiveness, meaning that half of the

failures that were predicted could be prevented with the proposed end-to-end solution.

This assumption is approximately 70% of the predictions that the current and most

optimized model in FeatureLab could achieve, which was 72%. This prevention will

also reduce by 50% the number of calls for these failed components. For the first

case, where all the suppliers and Dell are considered since all components are covered
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by a warranty, the impact of the expected yearly savings on hardware components

would be $28M, the customer service calls avoided would amount to $54M, and this

would total to approximately $407M for the net savings in a five-year period. For

the second case, where batteries are covered by Dell’s warranty, the yearly hardware

savings would reach $0.2M, the customer service calls avoided for batteries would be

$0.5M, and approximately $2.7M could be obtained in net savings during the first

five years. Figure 7-1 shows the yearly impact if the process to prevent failures were

as accurate as the model. This described impact is a conservative approach to the

potential that this solution can have in hardware and customer service cost savings.

More realistically, additional savings need to be considered in supply chain, storage

costs, inventories, among others.

7.4 Going big

The impact this end-to-end solution can have around the globe for this specific use case

is worth considering. IDC forecasts shipments of 101M consumer desktops and 40M

consumer laptops for 2016 and cites a previous user base of 209M consumer desktops

and 89M consumer laptops from the past two years [33]. Taking into account that

30% of previous users have extended warranties, the active user base totals 230M+.

An average hardware component’s cost is also assumed to be $34. Failure rates are

considered the same, at 8.2% system failures per year, and with an accident rate of 30%

leaves an effective failure rate of 5.5%. Considering hardware costs, the total impact

hardware failures have around the globe exceeds $431M per year. Additionally, if we

consider the same user base, same competitive call center costs, and a conservative 30%

call rate for hardware failures globally [34] [35], the impact exceeds $490M. Therefore,

the worldwide impact exceeds $920M per year on hardware and customer service calls.

Utilizing the 72% accurate prediction model created with FeatureLab, the value of

this solution for this specific case surpasses $660M per year. As previously mentioned,

this does not take into account any saved costs in inventories, supply chain, working

capital, other support systems, among others.
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The financial impact that hardware failures have on manufacturers and service

providers is of important consideration. There are definitely other considerable

scenarios, where the players’ involvement and the solution’s scope varies, such as

considering that an implementation of this predictive solution would reduce calls to

Dell across all hardware components, not just batteries, and have a much bigger impact.

These different scenarios could be constructed from the mentioned assumptions and

from Figure 7-1, which demonstrates the impact of the results of this study to the

different players.

Figure 7-1: Summary of the financial yearly implications for both use cases and an
estimated global impact. Different variations of these use cases can be built using the
given information.

Finally, a sensitivity analysis was developed to understand the variability on

the financial impact depending on the accuracy of the model. The results show an

important impact depending on the use case and the industrial player. In the first case,

a 10% variability in the model to prevent hardware failures would impact Dell and

their suppliers in $16M per year. In the second case, the impact of a 10% variability

in the model would impact Dell in $0.1M per year. The biggest influence is the call

center cost. These results for the models effectiveness are summarized in Figure 7-2.
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Figure 7-2: Sensitivity analysis of the impact of the model’s effectiveness. The call
center’s call reduction impact is very relevant to Dell’s case. Generally, it is worth
noting how the performance of the predictive model has a very important financial
impact. Hence, the relevance of the data, generated features, modeling techniques and
tuning settings.
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Chapter 8

Conclusions

The analysis, results, and potential for implementation of an end-to-end solution

demonstrate through this work an interesting potential for the proposed data science

process and prevention of hardware failure through sensor data. Dell has many of the

necessary tools and capabilities to implement such solutions.

8.1 Key Findings

The findings of this work can be explained in two areas: prevention of hardware failure

at Dell and evaluation of machine learning tools.

Prevention of hardware failure at Dell

The “quality of a model is as good as the data used in its construction,” [36] and so

far this work has presented a potential solution with promise for a real and tangible

impact for Dell, its customers, and its suppliers. Taking the lessons and observations

from the current prevention system and the proposed solution, an improved end-to-end

solution would require the following characteristics:

1. Real-time integration of SAC

Data is currently stored in summary files in each system and mostly only

extracted when a failure happens. The change needs to be implemented in the

following two ways:
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(a) Real-time extraction of data from the systems’ hardware sensors that would

be collected on to the server.

(b) Compressed storage of historical data from systems that is uploaded at

defined dates.

2. Real-time integration of new data to constructed models

As new data is imported from systems, the previously created models can be

re-evaluated for improved prediction accuracy.

3. Real-time feedback to the user

Models can be exported to a program in the users’ system (such as SAC), or run

on the cloud, which would be used to monitor for potential hardware failures

with high accuracy and fast response time to the user.

Additional work with more historical data needs to be done in order to improve the

developed prediction models for hard drive failures. One of the most limiting findings,

while selecting the data, was that any failure that was going to be analyzed had no

more history than the current log for the day when it failed. This was a limiting factor

to the insight that could be obtained from this data.

Machine learning tools

The utilization of the different machine learning tools enabled us to compare their

functionalities. This makes these tools particularly dependant on the required uses

and goals. Among the tools, this study demonstrated the following findings:

1. Varied predictive modeling performances, with non-standardized metrics, and

different visualization options.

2. The tools only solve the last stage of the data science process, needing much

manual work in the earlier stages.

3. These tools are ready to scale, as they offer additional services such as data and

model storage and updating.
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4. The DFS algorithm demonstrated to have improved the accuracy of the built

machine learning models against using a traditional näıve approach. This method

to use DFS-generated features translates into added value for solving prediction

problems

The machine learning tools provide a user-friendly and intuitive platform with easy

access for anyone to become a “citizen data scientist.” However, the tools showed

varied performance and functionalities and it is important for the user to know their

modeling, metrics, and visualization requirements when choosing one of these tools.

8.2 Contributions

This work proposes new concepts in the subject of AI, a data-driven solution, the

prevention of hardware failure, and improving the performance of predictive models.

The contributions of this work are summarized in the following statements:

1. Recommended an AI taxonomy and framework to facilitate the understand-

ing of AI as a tool and as a strategy in the pragmatic business sense as “Smart

Machines.” The taxonomy divided AI into the following technologies: machine

learning, deep learning, image recognition, NLP and NLI, and prescriptive ana-

lytics. The taxonomy represented AI in three layers: smart infrastructure, smart

data, and smart apps and services.

2. A competitive analysis of the different AI technologies and business

applications was presented as well, as an estimation for the Smart Machines

market. This showed potential opportunities specifically for machine learning

applications.

3. This thesis proposes a data science process with six stages to follow when

there is a goal to predict a specific occurrence. The specific stages to complete

are: raw data, study-specific data extract, problem-specific data, data slices,

labeled training data, and models and results.
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4. We compared seven different machine learning tools and their predictive

models for the particular problem of hard drive failures. The most accurate

model with test data (out of sample data) was achieved using DFSFeatures by

Skytree with an AUC of 0.98 and a recall of 0.84 at a FPR of 0.01.

5. We demonstrated that DFS-generated training data improved the per-

formance of the built machine learning models. This increased the predictive

accuracy, measured by the AUC, on an average of 13% for train data and an

average of 11% for test data.

6. This work presents a new approach to prevent hard drive failures through

data from sensors and following the proposed the data science process.

8.3 Recommendations

Through this analysis, it is apparent that Dell has the necessary tools to implement

such end-to-end data science solution in order to have a real impact in their business

and their customers’ experience. Additionally, once the impact of a desired technology

or prediction problem is understood, the proposed data science process can be followed

for the development of new use cases. This data-driven process is transferable to other

parts of the business and products.

8.4 Future projects

There exist 16 new concepts that were developed during a brainstorming session at

Dell, and three more that a detailed financial and technological analysis was performed.

There are four immediate alternatives that can be pursued at Dell are:

1. Implementation of the proposed end-to-end solution for hardware failure preven-

tion.

2. Further data validation of ideas, in particular the other top three concepts that

were identified in:
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• Security

• Serviceability

• Productivity

3. Research additional Smart Machines opportunities for Dell’s potential entrance

in this market.

4. Identify a new prediction problem of interest and follow the proposed data

science process to develop a new particular end-to-end solution.

8.5 Conclusions

AI is no longer a far away futuristic field, but a real and tangible day-to-day technology

that we are utilizing to enhance processes, business, and our daily lives. The amount

of progress and new tools that have been developed during the past year has been

fascinating. As seen throughout this work, Smart Machines and the data science

process are a very applicable concept to businesses and there is great potential for a

plethora of use cases. A great deal of technology is easily available through automated

platforms and even open source software that are reducing the entry-barriers for new

players that can disrupt the traditional businesses. However, there are many variations

on the functionalities of the available machine learning tools and software. But very

importantly, these tools provide realistic improvements to conventional processes and

are a powerful alternative that can make of everyone a citizen data scientist.

After having taken a deep dive into the wide, complex, and amazing field of

AI, there was a great deal of learning that provided an entrance into a field that

is changing the world as we know it. Utilizing the same core technology, such as

machine learning, and following the proposed data science process, there is much

opportunity for implementations in a variety of cases. These cases are very relevant

to many areas such as preventive maintenance of all industries, financial applications,

disease treatment and prevention in health care, prediction of the outcome for any

process, among others. Dell and any business have many detected opportunities, and
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this detailed analysis was for just one business case. There are many more uses that

eagerly wait to be explored around us with this data science process and machine

learning tools.
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Appendix A

AI applicable concepts
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