
Distributed Stratified Locality Sensitive Hashing for
Critical Event Prediction in the Cloud

Alessandro De Palma, Erik Hemberg, Una-May O’Reilly
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
adepalma@mit.edu, {hembergerik,unamay}@csail.mit.edu

Abstract

The availability of massive healthcare data repositories calls for efficient tools for
data-driven medicine. We introduce a distributed system for Stratified Locality
Sensitive Hashing to perform fast similarity-based prediction on large medical
waveform datasets. Our implementation, for an ICU use case, prioritizes latency
over throughput and is targeted at a cloud environment. We demonstrate our system
on Acute Hypotensive Episode prediction from Arterial Blood Pressure waveforms.
On a dataset of 1.37 million points, we show scaling up to 40 processors and a 21×
speedup in number of comparisons to parallel exhaustive search at the price of a
10% Matthews correlation coefficient (MCC) loss. Furthermore, if additional MCC
loss can be tolerated, our system achieves speedups up to two orders of magnitude.

1 Introduction

Physiological time-series data from medical sensors is constantly increasing: in order to utilize this
data to inform clinical decision support, scalable yet interpretable algorithms are needed. K-Nearest-
Neighbors (KNN) methods have long been the golden standard for time series prediction [8, 18] and
still offer greater interpretability than the state-of-the-art (e.g., CNN [17]). Exact KNN methods have
a linear prediction time in the size of the dataset for high-dimensional points. Therefore, previous
work analyzed the effectiveness of fast approximate nearest neighbor algorithms for prediction
on time-series and, in particular, of locality sensitive hashing (LSH) on arterial blood pressure
(ABP) datasets [10], [11]. LSH incurs superlinear memory costs: to address this limitation and
to benefit from the parallelism of modern computer architectures, distributed and parallel LSH
algorithms have been presented [1], [7], [16]. Moreover, a distributed LSH implementation with
limited functionalities is available on Spark’s MLlib [12]. Here, we introduce our own distributed
LSH system, relying on Stratified Locality Sensitive Hashing (SLSH), a multi-metric implementation
of LSH with demonstrated effectiveness on medical time-series [10]. Our design is targeted at the
Intensive Care Unit (ICU) setting, in which the speed for a single query matters more than high-
volume query processing. Furthermore, our implementation is made for the cloud environment for
ease of access with respect to a private compute cluster. We showcase the system’s performance on
Acute Hypotensive Episodes (AHE) prediction on datasets in the order of one million points from
the MIMIC-III waveform database [4], using up to 200 times more data than the previous LSH ABP
analyses. We demonstrate scaling up to 40 processors and show that previous LSH results in the
domain still hold on larger datasets. In the following, we first review SLSH (§2), then describe our
distributed SLSH system (§3) and finally present our experimental results (§4).

2 Background: Locality Sensitive Hashing

Standard Locality Sensitive Hashing is based on building multiple hash tables where collisions
are maximised for similar data points [9]. Within such tables, a point and its nearest neighbors

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

ar
X

iv
:1

71
2.

00
20

6v
1 

 [
cs

.L
G

] 
 1

 D
ec

 2
01

7



will likely lie in the same hash buckets, allowing for a sublinear time algorithm at the price of
superlinear memory requirements. LSH relies on hash functions that are (r, cr, p1, p2)-sensitive [9]
for a given distance metric δ(·, ·), i.e., hash functions belonging to a familyH = h :M → U such
that, for any two points x, y ∈ M , a constant c ≥ 1, and two probabilities p1 > p2: if δ(x, y) ≤ r,
then PH[h(x) = h(y)] ≥ p1 and if δ(x, y) ≥ cr, then PH[h(x) = h(y)] ≤ p2. We use two
such hash families: the bit-sampling family when δ is the l1 norm [5] and the Random Projection
family for the Cosine norm [2]. In order to decrease the number of collisions, a new hash family
H′ = h :M → Um is made from m independent hash functions in H. Retrieval recall, i.e., the
number of neighbors matching those retrieved by an exhaustive search, is then increased by using L
independent tables indexed by instances of H′. A set of candidates for a query is obtained by the
union of the datapoints which collide with the query in the L tables. A linear search is then performed
on the candidates (rather than on the entire dataset) to answer the query. The performance of LSH is
influenced by m and L [3].

Stratified Locality Sensitive Hashing. Standard LSH compares two datapoints according to one
metric. Often, this does not suffice for complex domains such as medical time series and results
in a gap between semantic and metric spaces [10]. Moreover, for large datasets, the linear search
over the candidates is the bottleneck for LSH [13]. Stratified Locality Sensitive Hashing (SLSH)[10]
addresses these drawbacks and demonstrated both speedups and a higher prediction accuracy in the
ABP domain. Let us denote by n the number of points in the dataset. SLSH uses the points in the
most populous buckets, i.e., those which contain more than αn candidates, as the population for a
further (inner) layer of LSH, employing a different metric. This not only reduces the number of
candidates for a query, but also incorporates another notion of similarity in their selection [10]. For
this application, we employed l1 norm for the outer layer and cosine similarity for the inner layer.
We denote the parameters for the outer LSH layer with the subscript out (e.g., mout) and those for
the inner layer with in (e.g., min).

3 Distributed SLSH

We now describe the design of our distributed SLSH system (DSLSH), which is publicly available
at https://github.com/Distributed-SLSH. Figure 1 shows the architecture of the distributed
system, which is composed of ν identical SLSH nodes of p cores and an Orchestrator, coordinating
the execution. Each of the nodes executes a parallel SLSH algorithm on a subset of the dataset
of O(n/ν) points, as in Sundaram et al. [16]. The Orchestrator uses three processes, called Root,
Forwarder and Reducer. The Root coordinates query resolution and manages the table construction
on the nodes. Forwarder and Reducer respectively forward the queries to the nodes and process
their local outputs. During table construction, the Root assigns each node its share of the dataset and
broadcasts the mout Lout outer hash functions, as the same hash family instances need to be used.
Using these hashes, each node then builds the tables in parallel with its dataset slice. When a query
arrives, it is sent from the Root to the Forwarder, which broadcasts it to the nodes. Then, each node
performs the query resolution in parallel and sends its local approximate K-NN to the Orchestrator.
These local outputs are gathered at the Reducer, which yields the global K-NN set by keeping the K
closest candidates to the query (reduction operation). The global K-NN set is used to output the final
prediction result at the Root.

Figure 1: Multi-node distributed system ar-
chitecture.

Figure 2: Intra-node architecture; cores are
denoted by Pi.

2

https://github.com/Distributed-SLSH


Table 1: Employed ABP datasets for AHE prediction. l and c denote lag and condition window
lengths, l/d is the length of the lag subwindows that the samples of the series represent. The dataset
for the previous LSH AHE analyses is provided for reference.

Name l l/d c n points (scale-up to [10], [11]) %AHE

AHE-30l-30c 30 min. 1 min. 30 min. 8.037× 105 (124) 98.45%
AHE-5l-5c 5 min. 10 s 5 min. 1.373× 106 (212) 96.04%
Kim et al. [10], [11] 300 min. 1 min. 30 min. 6.467× 103 (1) 92.06%

Intra-node Parallelism. We parallelize on the multiple tables of the outer LSH layer, assuming
that p < Lout. This usually holds in practice, as a rather large Lout is needed to retrieve a good
approximation of the nearest neighbor set. An alternative approach to intranode parallelism is to
batch the queries and rely on the fact that queries distant from each other will not hash to the same
buckets [16]. Such a design would be ill-suited for our ICU use-case, as we expect a low number of
queries per second. Figure 2 outlines the architecture within a distributed SLSH node. The dataset is
stored in shared memory and each processor Pi has O(Lout/p) outer tables, whose buckets contain
pointers to the shared memory. These tables are constructed entirely in parallel, as each table employs
independent instances ofH′. Therefore, there is no overlap in the computations for any pair of hashes.
Inner LSH tables are then built sequentially where the population is larger than nα. When a query
from the Orchestrator is received, the arbitrary Master process broadcasts it to the other cores. Query
resolution (possibly resorting to the second LSH layer) is then performed locally by each core on the
share of tables it owns, yielding a partial K-NN set. These partial results are gathered at the Master,
which computes the final output through a reduction and sends it to the Orchestrator.

4 Experiments and Results

We present experimental results on the prediction of acute hypotensive episodes on arterial blood
pressure data extracted from the MIMIC-III ICU waveform database [4], freely accessible from
PhysioNet [6]. We first extend previous LSH ABP analyses ([11], [10]) on larger datasets and show
various prediction quality trade-offs (§4.1). Then, for a fixed trade-off (as parallelism does not
influence the prediction output), we test whether our DSLSH system properly employs the available
compute resources with a scalability analysis (§4.2).

Our datasets are composed of time series spanning a time window of length l (lag window) with
d = 30 subwindows, each of length l/d. The average Mean Arterial Pressures (MAP) of the valid
heart beats within each subwindow form the d samples of the series. Beat validity is assessed by
checking whether each beat respects a set of properties [15]. These time-series are used for similarity
search and are labeled positive or negative depending on whether an AHE occured in a time interval
of length c immediately following the lag window (condition window). We define AHE as a c-minute
interval in which at least 90% of the per-beat MAP values are below 60 mmHg. Depending on the
size of the lag and condition windows, we obtain datasets of different sizes by applying a rolling
window algorithm on all the available ABP waveforms. The algorithm moves the window forward by
10% of the total window size (l + c) in case of no AHEs and immediately after the previous window

Figure 3: Speedup and MCC loss to PKNN
on dataset AHE-30l-30c, with p = 8, ν = 2.
MCC ∈ [−1, 1], the higher the better.

Figure 4: Zoom-in on Figure 3. p = 8, ν = 2.
SLSH onset denotes the outer LSH configura-
tion on which the inner layer is applied.

3



n = 801725, median #comparisons (×103)
νp DSLSH (S8) DSLSH CI PKNN PKNN/DSLSH

8 9.58 (1.00) [8.83, 10.57] 100.23 10.46
16 5.60 (1.71) [4.90, 6.39] 50.11 8.94
24 3.36 (2.85) [2.99, 3.79] 33.40 9.93
32 2.47 (3.88) [2.26, 2.71] 25.05 10.14
40 2.32 (4.12) [2.08, 2.56] 20.04 8.63

Table 2: Strong scaling on AHE-30l-30c, tol-
erated MCC loss: 11%. S8 denotes speedup to
single-node (νp = 8).

n = 1371479, median #comparisons (×103)
νp DSLSH (S8) DSLSH CI PKNN PKNN/DSLSH

8 7.88 (1.00) [6.93, 8.20] 171.43 21.76
16 4.46 (1.77) [4.01, 4.79] 85.72 19.21
24 2.42 (3.25) [2.19, 2.74] 57.14 23.59
32 2,02 (3.89) [1.78, 2.20] 42.86 21.17
40 1.53 (5.13) [1.33, 1.68] 34.29 22.35

Table 3: Strong scaling on AHE-5l-5c, tolerated
MCC loss: 10%. S8 denotes speedup to single-
node (νp = 8).

if an AHE is present [15]. Table 1 describes the employed datasets and compares them to previous
work. As a result of the rolling window algorithm, waveforms without AHE (%AHE) dominate our
datasets.

4.1 Speed vs. Matthew’s Correlation Coefficient trade-off

We investigate speed vs. prediction quality as a function of the SLSH parameters, using weighted
voting withK = 10 nearest neighbors for prediction. The goal is to extend the results in [10] on larger
datasets. Therefore, we focus on AHE-30l-30c, where the condition window length is the same as in
[10] but with a factor 124 more data, a higher class imbalance and a lag window 10 times smaller.
We resort to Matthew’s Correlation Coefficient (MCC) for prediction quality, a robust measure in
cases of severe class imbalance such as ours [14]. For speed, we measure the maximum number of
comparisons (distance computations) across all processors, the bottleneck for large datasets [13]. We
report speedup with respect to a data-parallel l1 exhaustive search for K-NN (PKNN). Data-parallel
exhaustive search assigns equal shares of the points to all the processors in all the nodes, resulting in
n
pν comparisons per processor. Figures 3 and 4 show median values and 95% Confidence Intervals for
the speedup of each parameter combination, on an out-of-sample test set of 2000 queries with p = 8,
ν = 2. We first employ only the outer LSH layer (LSH) with mout ∈ {100, 125, 150, 175, 200},
Lout ∈ {72, 96, 120}. Then, for the point having the best speedup and at most 0.2 (10%) loss
in MCC (SLSH onset: mout = 125, Lout = 120), we repeat the experiments with an inner layer
and min ∈ {40, 65, 90, 115}, Lin ∈ {20, 60}, α = 0.005 (SLSH). As expected from Section
2, increasing m reduces the MCC and increases the speedup, while increasing L has the opposite
effect. We expect with tuning that the inner layer would increase speedup and could simultaneously
increase MCC (due to the use of a second distance metric) compared to its onset. We point out that
the outer layer yields a wide range of trade-offs (Figure 3): depending on the given ICU use-case, the
appropriate SLSH onset should be chosen according to the MCC loss a clinician can tolerate.

4.2 Scalability Analysis

This section examines the behavior of DSLSH on two datasets of different size, as the overall number
of processors, pν, increases (strong scaling). We focus on speed vs. MCC trade-offs tolerating a 10-
11% MCC loss and use PKNN as a baseline. Tables 2 and 3 show results for p = 8, ν ∈ {1, . . . , 5}
and report the median (and its 95% CI) of the maximum number of comparisons across the processors
on 2000 queries. We see that DSLSH has almost perfect scaling when adding nodes for both
AHE-5l-5c and AHE-30l-30c. Moreover, as expected from the sublinear dependence on dataset size
of LSH, the speedup of DSLSH to PKNN increases from AHE-30l-30c to AHE-5l-5c. Therefore,
we can expect such a speedup to further increase on larger datasets, at no additional MCC loss.

5 Conclusions and Future Work

We presented a distributed system for Stratified Locality Sensitive Hashing (DSLSH), allowing for
sublinear K-NN prediction times on large physiological time-series repositories in the cloud. We
extended the existing LSH AHE prediction analysis by applying the algorithm on datasets in the
order of one million points and confirmed the effectiveness of LSH within this domain. We achieved
almost perfect scaling on nodes and, depending on the target prediction quality, speedup factors to
parallel exhaustive search ranging from one to two orders of magnitude. We intend to integrate other
and additional similarity metrics to further increase prediction quality on physiological time series.

4



References

[1] Bahman Bahmani, Ashish Goel, and Rajendra Shinde. Efficient distributed locality sensi-
tive hashing. In Proceedings of the 21st ACM International Conference on Information and
Knowledge Management, CIKM ’12, pages 2174–2178, New York, NY, USA, 2012. ACM.

[2] Moses S. Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings
of the Thiry-fourth Annual ACM Symposium on Theory of Computing, STOC ’02, pages 380–
388, New York, NY, USA, 2002. ACM.

[3] Wei Dong, Zhe Wang, William Josephson, Moses Charikar, and Kai Li. Modeling LSH for
performance tuning. In Proceedings of the 17th ACM Conference on Information and Knowledge
Management, CIKM ’08, pages 669–678, New York, NY, USA, 2008. ACM.

[4] Alistair Edward William Johnson, Tom Joseph Pollard, Lu Shen, Li-wei Lehman, Mengling
Feng, Mohammad Ghassemi, Benjamin Edward Moody, Peter Szolovits, Leo Anthony G. Celi,
and Roger G. Mark. MIMIC-III, a freely accessible critical care database. 3:160035, 05 2016.

[5] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions via
hashing. In Proceedings of the 25th International Conference on Very Large Data Bases, VLDB
’99, pages 518–529, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[6] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. Ch. Ivanov, R. G.
Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley. PhysioBank,
PhysioToolkit, and PhysioNet: Components of a new research resource for complex
physiologic signals. Circulation, 101(23):e215–e220, 2000 (June 13). Circulation
Electronic Pages: http://circ.ahajournals.org/content/101/23/e215.full PMID:1085218; doi:
10.1161/01.CIR.101.23.e215.

[7] Parisa Haghani, Sebastian Michel, and Karl Aberer. Distributed similarity search in high
dimensions using locality sensitive hashing. In Proceedings of the 12th International Conference
on Extending Database Technology: Advances in Database Technology, EDBT ’09, pages 744–
755, New York, NY, USA, 2009. ACM.

[8] Bing Hu, Yanping Chen, and Eamonn Keogh. Time series classification under more realistic
assumptions. In SDM, pages 578–586. SIAM, 2013.

[9] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the
curse of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of
Computing, STOC ’98, pages 604–613, New York, NY, USA, 1998. ACM.

[10] Y. B. Kim, E. Hemberg, and U. M. O’Reilly. Stratified locality-sensitive hashing for sublinear
time critical event prediction. In Conference on Neural Information Processing Systems (NIPS)
Machine Learning in Healthcare Workshop, 2016, 2016.

[11] Y. B. Kim and U. M. O’Reilly. Analysis of locality-sensitive hashing for fast critical event
prediction on physiological time series. In 2016 38th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), pages 783–787, Aug 2016.

[12] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman, Davies
Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris Xin, Reynold Xin, Michael J.
Franklin, Reza Zadeh, Matei Zaharia, and Ameet Talwalkar. Mllib: Machine learning in apache
spark. J. Mach. Learn. Res., 17(1):1235–1241, January 2016.

[13] Loïc Paulevé, Hervé Jégou, and Laurent Amsaleg. Locality sensitive hashing: A comparison
of hash function types and querying mechanisms. Pattern Recogn. Lett., 31(11):1348–1358,
August 2010.

[14] David M. W. Powers. Evaluation: from Precision, Recall and F-measure to Roc, Informedness,
Markedness & Correlation. In International Journal of Machine Learning Technology 2 (1),
37-63, 2011.

[15] Steven Anthony Rivera. beatDB v3: A Framework for the Creation of Predictive Datasets from
Physiological Signals. 2017.

[16] Narayanan Sundaram, Aizana Turmukhametova, Nadathur Satish, Todd Mostak, Piotr Indyk,
Samuel Madden, and Pradeep Dubey. Streaming similarity search over one billion tweets using
parallel locality-sensitive hashing. Proc. VLDB Endow., 6(14):1930–1941, September 2013.

5

http://circ.ahajournals.org/content/101/23/e215.full


[17] Z. Wang, W. Yan, and T. Oates. Time series classification from scratch with deep neural
networks: A strong baseline. In 2017 International Joint Conference on Neural Networks
(IJCNN), pages 1578–1585, May 2017.

[18] Xiaopeng Xi, Eamonn Keogh, Christian Shelton, Li Wei, and Chotirat Ann Ratanamahatana.
Fast time series classification using numerosity reduction. In In ICML’06, pages 1033–1040,
2006.

6


	1 Introduction
	2 Background: Locality Sensitive Hashing
	3 Distributed SLSH
	4 Experiments and Results
	4.1 Speed vs. Matthew's Correlation Coefficient trade-off
	4.2 Scalability Analysis

	5 Conclusions and Future Work

